

 Technical papers

Author: Rick Newlands 1 updated: 03/01/12

Modelling the nitrous run tank emptying

Introduction
This paper describes mathematical models of the emptying of a tank of saturated nitrous
oxide that empties purely due to its self pressure. This is sometimes called a ‘Vapak’ process
(powered by vapour pressure alone).

Firstly, read our ‘The physics of nitrous oxide’ paper as it covers the processes we’ll be
modelling herein.

The mathematical model of the liquid phase emptying is based on a model of saturated
propane emptying from a tank devised by Dr Bruce Dunn (Ref. 1). Aspirespace gratefully
acknowledges the help we received from Dr Dunn in the preparation of our nitrous tank
model.

The mathematical model of the vapour phase emptying is all our own work.

The nitrous hybrid as a system
The emptying process is iterative with time, and it’s strongly coupled to the combustion
chamber pressure.
So the models of the tank emptying has to be coupled to a simulation of the combustion
chamber and nozzle throat of the hybrid rocket motor that it is feeding:

The feedback loops of a nitrous hybrid emptying its liquid are as follows:

Liquid nitrous flows out of the tank
causing a drop in the level of liquid
nitrous. This causes an increase in the
head space of nitrous vapour above the
liquid.
The nitrous vapour pressure drops due
to this expansion.
Some of the liquid nitrous then
vapourises to try to raise the vapour
pressure back up.
The energy required to vapourise the
liquid comes from the liquid itself, and so
its temperature drops.
This lower temperature lowers the tank
pressure.

The flowrate of nitrous out of the tank
depends on the difference between the
tank and combustion chamber pressure.

The fuel mass flowrate eroded from the
plastic fuel grain depends on the total
flowrate of fuel plus nitrous oxidiser.

The combustion chamber pressure depends on the fuel to oxidiser ratio, the gain of mass in
the chamber (fuel flowrate + ox flowrate – flowrate out the nozzle), and the nozzle throat area.
But that’s another story: see section 7.5.2 of Ref. 3 for details.

 Technical papers

Author: Rick Newlands 2 updated: 03/01/12

1: The tank emptying liquid nitrous
When the nitrous vapour expands due to the level of the liquid dropping, the pressure drops
due to this expansion.
We don’t need to know what this pressure drop is to model the tank emptying, instead we

estimate how much mass of nitrous liquid, vm , has been vapourised to try and raise the

pressure back up again to as it was.

This is an iterative process; we pick an arbitrary nonzero value for vm to start with, and the

program quickly converges on the actual value, and stays with it as it changes as the tank
empties.

We calculate the heat removed from the liquid nitrous during its vaporisation:

 vv HmQ  (equ. 1.1) where vH is the enthalpy (latent heat) of vaporisation evaluated

at the current nitrous temperature.

We then calculate the temperature drop of the remaining liquid nitrous (liquidm) due to losing

this heat:

liquidliquidCm

Q
T


 (equ. 1.2) where liquidC is the Specific heat capacity of liquid nitrous

at the current temperature.

We then subtract this temperature drop from the current liquid nitrous temperature to get a
new lower liquid nitrous temperature.

The liquid density liquid , the vapour density vapour , and the vapour pressure (tank pressure)

are now recalculated based on this lower temperature.

Using this new tank pressure and the current combustion chamber pressure, the mass

flowrate of liquid nitrous out of the tank, liquidm , is now calculated:

Starting with Bernoulii's equation for the flow of nitrous from the injector manifold into the injector
orifices:

2
2

12
2

1
injectorliquidinjectormanifoldliquidmanifold VPVP   (equ. 1.3)

As the nitrous leaves the injector orifices, it breaks into droplets without changing pressure, so

injectorP combustion chamber pressure.

The injector pressure drop can be checked to ensure that it is greater than 20% of the
combustion chamber pressure for safety as advised in Ref. 3

Substituting for the velocity of the liquid from a rearrangement of the mass continuity equation:

A

m
V

liquid

liquid




 (equ. 1.4) where liquidm is the mass flowrate of liquid, and A is the cross-

sectional area of the manifold or injector orifice.

gives:

  














22

2
1

2
manifoldinjectorliquid

liquid

manifoldinjector
AAN

Km
PPP




 (equ. 1.5) where N is the

number of orifices.

 Technical papers

Author: Rick Newlands 3 updated: 03/01/12

Note the inclusion of a loss coefficient K. This represents the loss of total pressure due to viscous
losses/turbulence as the flow flows through the edges of the orifice.
As the static pressure of the nitrous liquid drops as it passes through the orifices, it vapourises.
This means that what flows through the injector is a foam of liquid and bubbles, but mostly
vapour, and so traditional tables of loss coefficients or discharge coefficients don’t work for this
mixed fluid. You have to tailor this K coefficient until the time taken to empty the tank matches
your test results. We’ve found that a good starting value for K is 2.0 for nitrous.

Rearranging, and assuming that
2

manifoldA is much larger than the injector orifice area gives:

loss

liquid

liquid
D

P
m




2
 (equ. 1.6) where

 2
injector

loss
AN

K
D  (equ. 1.7)

Having got the mass flowrate of liquid out of the tank we can now integrate to get the mass
that has left the tank in this time iteration:

Total system mass totalm (liquid + vapour) has decreased by tmliquid (equ. 1.8)

Liquid mass liquidm has decreased by tmliquid (equ. 1.9)

The resulting value for liquidm is the mass of liquid that would be in the tank if the nitrous did

not react to the expansion of the nitrous vapour and the ensuing drop in pressure. We’ll

designate this as oldliquidm _

But the nitrous does react, both to the increase in nitrous volume and also the drop in
temperature.

The densities of the liquid and vapour are functions of temperature only.
The nitrous is constrained to fit into the volume of the tank, so is forced to adhere to a volume
formula:

Vvapour + Vliquid = Vtank or, k

vapour

vapour

liquid

liquid
V

mm
tan


 (equ. 1.10)

where vapourliquidtotal mmm 

(equ. 1.11)

Rearranging:

































vapourliquid

vapour

total

k

liquid

m
V

m





11

tan

 (equ. 1.12) we’ll designate this value as newliquidm _

The discrepancy between this value and the previous value is the mass of nitrous that has
been vapourised:

newliquidoldliquidv mmm __  (equ. 1.13)

With this new value for vm we can proceed to the next time iteration, and begin the

calculation loop again.

 Technical papers

Author: Rick Newlands 4 updated: 03/01/12

NB
Bear in mind that this model is an approximation only, which uses simple integration routines.
Occasionally, the model goes awry just as the last of the liquid nitrous is emptying. Add the
following check to catch this, and use it to trigger engine burnout.

if (mliquid_new > mliquid_old) then trigger burnout

2: The vapour-only phase
After all the liquid nitrous has run out of the run-tank, there will still be some vapour
remaining. Even if you started with a tank completely full of liquid, some vapour will be
created as the tank empties.
This vapour is dense enough to erode the hybrid fuel grain and so produce thrust, though it
burns fuel-rich (too little oxidiser), and this ‘vapour-only’ phase doesn’t last long.

From our hybrid firing data, we’ve learned a few surprising things about this ‘vapour-only’
phase of combustion:

1) It transpires that the pressure loss that occurs as the vapour flows through the
injector orifices is identical to when the liquid was flowing through it (the head loss
coefficient K is the same). This proves that the liquid vaporises completely to vapour
inside the orifices, assuming that you use numerous small orifices as we do.

2) The vapour emptying out of the run-tank can be modelled as a standard ‘isentropic’
process. That means that very little energy is wasted (increase of entropy) during the
emptying, and no heat is transferred from the tank walls to the vapour.

3) Therefore the vapour pressure and temperature drop rapidly as the tank empties and
the vapour expands.

4) The vapour is not an ‘ideal gas’. Intermolecular forces (the forces between the vapour
molecules) are noticeably at work, so nitrous vapour expands differently to that of an
ideal gas (you have to add a compressibility factor to the standard ideal gas
equation).

With the above in mind, a simple mathematical model will simulate the tank emptying of
nitrous vapour, which is now described:

Firstly, the ‘real gas’ aspect of the nitrous vapour has to be modelled: nitrous’s compressibility
factor (Z) has to be calculated. Its graph is:

 Technical papers

Author: Rick Newlands 5 updated: 03/01/12

Our sims show that the originally saturated nitrous vapour remains on the dotted saturated
vapour line shown in this graph as it empties from the tank. We’ve approximated this vapour
curve as a simple straight line running from the Critical point to the point (0,1) at zero
pressure. Thus, the compressibility factor is just a linear function of tank vapour pressure.

Next, capture and store the initial tank values that occurred the instant the last of the liquid
ran out of the tank exit: initial vapour temperature Ti, initial vapour mass mi, initial vapour

pressure Pi, and initial vapour density i
Then work out the initial compressibility factor Zi using Pi.
Next, calculate the mass flowrate of nitrous vapour out of the tank using equations 1.6, 1.7,
and 1.9, but working with vapour instead of liquid. The loss coefficient K in equation 1.7
remains the same.

Next, the vapour emptying can be modelled as an isentropic process. The inter-relationships

between P, T, and  for an isentropic process are the standard isentropic equations:

 (

)

 (

)

 (equ. 2.1) where γ is the ratio of specific heats which is 1.3

for nitrous vapour. (Averaged over the subcritical temperature
range of interest.)

We’ll take time 1 as the initial value as the liquid just runs out, and time 2 as a point some
time later on in the emptying process.

Starting with the gas equation for a real gas: (equ. 2.2) where R is the specific

gas constant for nitrous.

Rearranging equation 2.2, and substituting

 (equ. 2.3) where V is volume, gives:

(

)

(

)
 (equ. 2.4) where Vtank is the run-tank volume.

Rearranging and cancelling gives:

(

)

Using equations 2.1 and substituting temperature for pressure:

 (

)

(

)

Taking the temperatures over to the left-hand side:

(

)

 (

) or: (

)

 (

)

 Technical papers

Author: Rick Newlands 6 updated: 03/01/12

Giving: (

) (

)

 (

)

 (equ. 2.5)

If we use the initial values we stored earlier as time 1, then equation 2.5 gives the
temperature at time 2, when the new mass of vapour within the tank is m2.

Now we can use equations 2.1 to calculate the new vapour pressure and density at time 2.

There is one problem though: we need to calculate Z2 in equation 2.5, but this depends upon
P2, the vapour pressure at time 2, which we calculate after calculating equation 2.5
So we need to resort to a recursive loop:

Now calculate .

Then increment the sim time to a new time 2, and repeat equations 1.6, 1.7, and 1.9, and
perform the new loop.

Results
When coupled to a sim of
the combustion chamber,
the results of the above
tank emptying simulation
models give a good
match with experimental
firing data:

 Technical papers

Author: Rick Newlands 7 updated: 03/01/12

Software
Some software extracts of the above models coded in the C++ language are listed below.
These comprise a suite of subroutines that give the nitrous properties as functions of
temperature etc called nitrous_oxide.cpp and its header file nitrous_oxide.h

Also listed are subroutines coding the tank emptying models described above.

Firstly, a listing for subroutines that calculate nitrous oxide physical properties:

/***
 ** File : nitrous oxide.cpp **
 ** **
 ** Description : Nitrous oxide physical properties **
 ** From Engineering Sciences Data Unit 91022 **
 ** **
 ** Created : 6/6/2000 Rick Newlands, Aspirespace **
 ***/

/* Functions tested and checked 6/6/2000 */
/* Note that functions are only valid to 36.0 deg C */
/* except nox_CpL which is stated to be valid only up to 30.0 deg C */
/* and nox_KL which currently roofs at 10.0 deg C */

/* This C++ version 4/3/03 Rick Newlands */
/* initial Revision Rick Newlands, Aspirespace */

#include "stdafx.h" /* (standard C++ header) */
#include <math.h>
#include "nitrous_oxide.h" /* header file */

const float pCrit = 72.51f; /* critical pressure, Bar Abs */
const float rhoCrit = 452.0f; /* critical density, kg/m3 */
const float tCrit = 309.57f; /* critical temperature, Kelvin (36.42 Centigrade) */
const float ZCrit = 0.28f; /* critical compressibility factor */
const float gamma = 1.3; /* average over subcritical range */

/* ranges of function validity */
const float lower_temp_limit = -90.0 + CENTIGRADE_TO_KELVIN;
const float upper_temp_limit = 36.4 + CENTIGRADE_TO_KELVIN;

static int dd;
static double bob, rab, shona, Tr;

/* signum of a number, used below */
short int SGN(double bob)
{
 short int signum;

 if (bob >= 0.0)
 signum = 1;
 else
 signum = -1;

 return (signum);
}

 Technical papers

Author: Rick Newlands 8 updated: 03/01/12

/* Nitrous oxide vapour pressure, Bar */
double nox_vp(double T_Kelvin)
{
 const float p[4] = {1.0f, 1.5f, 2.5f, 5.0f};
 const float b[4] = {-6.71893f, 1.35966f, -1.3779f, -4.051f};

 Tr = T_Kelvin / tCrit;
 rab = 1.0 - Tr;
 shona = 0.0;

 for (dd = 0; dd < 4; dd++)
 shona += b[dd] * pow(rab,p[dd]);

 bob = pCrit * exp((shona / Tr));

 return(bob);
}

/* Nitrous oxide saturated liquid density, kg/m3 */
double nox_Lrho(double T_Kelvin)
{
 const float b[4] = {1.72328f, -0.8395f, 0.5106f, -0.10412f};

 Tr = T_Kelvin / tCrit;
 rab = 1.0 - Tr;
 shona = 0.0;

 for (dd = 0; dd < 4; dd++)
 shona += b[dd] * pow(rab,((dd+1) / 3.0));

 bob = rhoCrit * exp(shona);

 return(bob);
}

/* Nitrous oxide saturated vapour density, kg/m3 */
double nox_Vrho(double T_Kelvin)
{
 const float b[5] = {-1.009f, -6.28792f, 7.50332f, -7.90463f, 0.629427f};

 Tr = T_Kelvin / tCrit;
 rab = (1.0 / Tr) - 1.0;
 shona = 0.0;

 for (dd = 0; dd < 5; dd++)
 shona += b[dd] * pow(rab,((dd+1) / 3.0));

 bob = rhoCrit * exp(shona);

 return(bob);
}

 Technical papers

Author: Rick Newlands 9 updated: 03/01/12

/* Nitrous liquid Enthalpy (Latent heat) of vaporisation, J/kg */
double nox_enthV(double T_Kelvin)
{
 const float bL[5] = {-200.0f, 116.043f, -917.225f, 794.779f, -589.587f};
 const float bV[5] = {-200.0f, 440.055f, -459.701f, 434.081f, -485.338f};

 double shonaL, shonaV;

 Tr = T_Kelvin / tCrit;
 rab = 1.0 - Tr;
 shonaL = bL[0];
 shonaV = bV[0];

 for (dd = 1; dd < 5; dd++)
 {
 shonaL += bL[dd] * pow(rab,(dd / 3.0)); /* saturated liquid enthalpy */
 shonaV += bV[dd] * pow(rab,(dd / 3.0)); /* saturated vapour enthalpy */
 }

 bob = (shonaV - shonaL) * 1000.0; /* net during change from liquid to vapour */

 return(bob);
}

/* Nitrous saturated liquid isobaric heat capacity, J/kg K */
double nox_CpL(double T_Kelvin)
{
 const float b[5] = {2.49973f, 0.023454f, -3.80136f, 13.0945f, -14.518f};

 Tr = T_Kelvin / tCrit;
 rab = 1.0 - Tr;
 shona = 1.0 + b[1] / rab;

 for (dd = 1; dd < 4; dd++)
 shona += b[(dd+1)] * pow(rab,dd);

 bob = b[0] * shona * 1000.0; /* convert from KJ to J */

 return(bob);
}

/* liquid nitrous thermal conductivity, W/m K */
double nox_KL(double T_Kelvin)
{
 const float b[4] = {72.35f, 1.5f, -3.5f, 4.5f};

 /* max. 10 deg C */
 if (T_Kelvin > 283.15)
 Tr = 283.15 / tCrit;
 else
 Tr = T_Kelvin / tCrit;

 rab = 1.0 - Tr;
 shona = 1.0 + b[3] * rab;

 for (dd = 1; dd < 3; dd++)

 Technical papers

Author: Rick Newlands 10 updated: 03/01/12

 shona += b[dd] * pow(rab,(dd / 3.0));

 bob = b[0] * shona / 1000; /* convert from mW to W */

 return(bob);
}

/* nitrous temperature based on pressure (bar) */
double nox_on_press(double P_Bar_abs)
{
 const float p[4] = {1.0f, 1.5f, 2.5f, 5.0f};
 const float b[4] = {-6.71893f, 1.35966f, -1.3779f, -4.051f};

 double pp_guess, step, tempK;

 step = -1.0;
 tempK = (tCrit - 0.1) - step;

 do /* iterative loop */
 {
 do
 {
 tempK += step;
 Tr = tempK / tCrit;
 rab = 1.0 - Tr;
 shona = 0.0;

 for (dd = 0; dd < 4; dd++)
 shona += b[dd] * pow(rab,p[dd]);

 pp_guess = pCrit * exp((shona / Tr));
 }
 while (((pp_guess - P_Bar_abs) * SGN(step)) < 0.0);

 step = step / (-2.0); /* reduce step size */
 }
 while (fabs((pp_guess - P_Bar_abs)) > 0.01);

 bob = tempK;

 return(bob); /* return temperature */
}

/* header file nitrous oxide.h */

/* Nitrous oxide vapour pressure, Bar */
double nox_vp(double T_Kelvin);

/* Nitrous oxide saturated liquid density */
double nox_Lrho(double T_Kelvin);

 Technical papers

Author: Rick Newlands 11 updated: 03/01/12

/* Nitrous oxide saturated vapour density */
double nox_Vrho(double T_Kelvin);

/* Nitrous oxide Enthalpy (Latent heat) of vapourisation */
double nox_enthV(double T_Kelvin);

/* Nitrous oxide saturated liquid isobaric heat capacity */
double nox_CpL(double T_Kelvin);

/* Nitrous oxide liquid thermal conductivity, W/m K */
double nox_KL(double T_Kelvin);

/* mean temperature K based on pressure */
double nox_on_press(double P_Bar_abs);

 Technical papers

Author: Rick Newlands 12 updated: 03/01/12

Tank emptying subroutines:

/* Tank emptying code extracts */
/* (c) Rick Newlands, AspireSpace */

/* Variables are in metric units except where stated otherwise */

#include "nitrous_oxide.h" /* header file for nitrous oxide property calcs subroutines */

/* prototypes */
static double injector_model(double upstream_pressure, double downstream_pressure);

/* square */
double SQR(double bob)
{
 return((bob * bob));
}

#define CENTIGRADE_TO_KELVIN 273.15 // to Kelvin

#define BAR_TO_PASCALS 100000.0
#define PASCALS_TO_BAR (1.0 / BAR_TO_PASCALS)

/* calculate injector pressure drop (Bar) and mass flowrate (kg/sec) */
static double injector_model(double upstream_pressure, double downstream_pressure)
{
 double mass_flowrate;
 double pressure_drop;

 pressure_drop = upstream_pressure - downstream_pressure; /* Bar */

 /* reality check */
 if (pressure_drop < 0.00001)
 pressure_drop = 0.00001;

 /* is injector pressure drop lower than 20 percent of chamber pressure? */
 if ((pressure_drop / hybrid.chamber_pressure_bar) < 0.2)
 hybrid.hybrid_fault = 3; // too low for safety

 /* Calculate fluid flowrate through the injector, based on the */
 /* total-pressure loss factor between the tank and combustion chamber */
 /* (injector_loss_coefficient includes K coefficient and orifice cross-sectional areas) */
 mass_flowrate =
 sqrt((2.0 * hybrid.tank_liquid_density * pressure_drop / hybrid.injector_loss_coefficient));

 return(mass_flowrate); /* kg/sec */
}

 Technical papers

Author: Rick Newlands 13 updated: 03/01/12

/* Equilibrium (instantaneous boiling) tank blowdown model */
/* Empty tank of liquid nitrous */
void Nitrous_tank_liquid(void)
{
 double bob;
 double Chamber_press_bar_abs;
 double delta_outflow_mass, deltaQ, deltaTemp;
 double Enth_of_vap;
 double Spec_heat_cap;
 double tc;

 static double lagged_bob = 0.0;

 /* blowdown simulation using nitrous oxide property calcs subroutines */

 /* update last-times values, O = 'old' */
 Omdot_tank_outflow = mdot_tank_outflow;

 Enth_of_vap = nox_enthV(hybrid.tank_fluid_temperature_K); /* Get enthalpy (latent heat) of
vaporisation */
 Spec_heat_cap = nox_CpL(hybrid.tank_fluid_temperature_K); /* Get specific heat capacity
of the liquid nitrous */

 /* Calculate the heat removed from the liquid nitrous during its vaporisation */
 deltaQ = vaporised_mass_old * Enth_of_vap;

 /* temperature drop of the remaining liquid nitrous due to losing this heat */
 deltaTemp = -(deltaQ / (hybrid.tank_liquid_mass * Spec_heat_cap));

 hybrid.tank_fluid_temperature_K += deltaTemp; /* update fluid temperature */

 /* reality checks */
 if (hybrid.tank_fluid_temperature_K < (-90.0 + CENTIGRADE_TO_KELVIN))
 {
 hybrid.tank_fluid_temperature_K = (-90.0 + CENTIGRADE_TO_KELVIN); /* lower limit */
 hybrid.hybrid_fault = 1;
 }
 else if (hybrid.tank_fluid_temperature_K > (36.0 + CENTIGRADE_TO_KELVIN))
 {
 hybrid.tank_fluid_temperature_K = (36.0 + CENTIGRADE_TO_KELVIN); /* upper limit */
 hybrid.hybrid_fault = 2;
 }

 /* get current nitrous properties */
 hybrid.tank_liquid_density = nox_Lrho(hybrid.tank_fluid_temperature_K);
 hybrid.tank_vapour_density = nox_Vrho(hybrid.tank_fluid_temperature_K);
 hybrid.tank_pressure_bar = nox_vp(hybrid.tank_fluid_temperature_K); /* vapour pressure,
Bar abs */

 Chamber_press_bar_abs = hybrid.chamber_pressure_bar; /* Bar Abs */

 /* calculate injector pressure drop and mass flowrate */
 mdot_tank_outflow = injector_model(hybrid.tank_pressure_bar, Chamber_press_bar_abs);

 Technical papers

Author: Rick Newlands 14 updated: 03/01/12

 /* integrate mass flowrate using Addams second order integration formula */
 /* (my preferred integration formulae, feel free to choose your own.) */
 /* Xn=X(n-1) + DT/2 * ((3 * Xdot(n-1) - Xdot(n-2)) */
 /* O infront of a variable name means value from previous timestep (Old) */
 delta_outflow_mass = 0.5 * delta_time * (3.0 * mdot_tank_outflow - Omdot_tank_outflow);

 /* drain the tank based on flowrates only */
 hybrid.tank_propellant_contents_mass -= delta_outflow_mass; /* update mass within tank
for next iteration */

 old_liquid_nox_mass -= delta_outflow_mass; /* update liquid mass within tank for next
iteration */

 /* now the additional effects of phase changes */

 /* The following equation is applicable to the nitrous tank, containing saturated nitrous: */
 /* tank_volume = liquid_nox_mass / liquid_nox_density + gaseous_nox_mass /
gaseous_nox_density */

 /* Rearrage this equation to calculate current liquid_nox_mass */
 bob = (1.0 / hybrid.tank_liquid_density) - (1.0 / hybrid.tank_vapour_density);

 hybrid.tank_liquid_mass
 = (hybrid.tank_volume - (hybrid.tank_propellant_contents_mass /
hybrid.tank_vapour_density)) / bob;

 hybrid.tank_vapour_mass = hybrid.tank_propellant_contents_mass -
hybrid.tank_liquid_mass;

 /* update for next iteration */
 bob = old_liquid_nox_mass - hybrid.tank_liquid_mass;

 /* Add a 1st-order time lag (of 0.15 seconds) to aid numerical */
 /* stability (this models the finite time required for boiling) */
 tc = delta_time / 0.15;
 lagged_bob = tc * (bob - lagged_bob) + lagged_bob; // 1st-order lag

 vaporised_mass_old = lagged_bob;

 // Check for model fault at nearly zero liquid oxidiser mass
 // If this occurs, use the fault flag to trigger burnout
 if (hybrid.tank_liquid_mass > old_liquid_nox_mass)
 hybrid.hybrid_fault = 9;

 /* update tank contents for next iteration */
 old_liquid_nox_mass = hybrid.tank_liquid_mass;
}

 Technical papers

Author: Rick Newlands 15 updated: 03/01/12

/* Linear interpolation routine, with limiters added */
/* incase x isn't within the range range x1 to x2 */
/* Limits updated to allow descending x values
 x = input value
 x1 = MINIMUM BOUNDS (minimum x)
 y1 = MINIMUM VALUE (output value at MINIMUM BOUNDS)
 x2 = MAXIMUM BOUNDS (maximum x)
 y2 = MAXIMUM VALUE (output value at MAXIMUM BOUNDS)
*/
double LinearInterpolate(double x, double x1, double y1, double x2, double y2)
{
 // This procedure extrapolates the y value for the x position
 // on a line defined by x1,y1; x2,y2

 double c, m, y; // the constants to find in y=mx+b

 if ((x1 < x2) && ((x <= x1) || (x >= x2))) // ascending x values
 {
 if (x <= x1) return y1; else return y2;
 }
 else if ((x1 > x2) && ((x >= x1) || (x <= x2))) // descending x values
 {
 if (x >= x1) return y1; else return y2;
 }
 else
 {
 m = (y2 - y1) / (x2 - x1); // calculate the gradient m
 c = y1 - m * x1; // calculate the y-intercept c
 y = m * x + c; // the final calculation
 return(y);
 }
}

/* Compressibility factor of vapour (subcritical) on the saturation line */
double compressibility_factor(double P_Bar_abs, double pCrit, double ZCrit)
{
 double Z;

 Z = LinearInterpolate(P_Bar_abs, 0.0, 1.0, pCrit, ZCrit);

 return(Z);
}

/* subroutine to model the tank emptying of vapour only */
/* Isentropic vapour-only blowdown model */
void subcritical_tank_no_liquid(
 double *vapour_temperature_K,
 double *vapour_mass,
 double *vapour_density,
 double *tank_pressure_bar,
 double chamber_pressure_bar,
 double injector_loss_coefficient,
 double *mdot_tank_outflow, double old_mdot_tank_outflow,
 double *tank_contents_mass,
 unsigned char *fault)
{
 static int Aim, OldAim;

 Technical papers

Author: Rick Newlands 16 updated: 03/01/12

 static bool first = true;

 double bob;
 double current_Z, current_Z_guess;
 double delta_outflow_mass;
 double step;

 static double initial_vapour_density, initial_vapour_mass, initial_vapour_pressure_bar;
 static double initial_vapour_temp_K, initial_Z;

 // capture initial conditions
 if (first == true)
 {
 initial_vapour_temp_K = *vapour_temperature_K;
 initial_vapour_mass = *vapour_mass;
 initial_vapour_pressure_bar = *tank_pressure_bar;
 initial_vapour_density = *vapour_density;

 initial_Z = compressibility_factor(initial_vapour_pressure_bar, nox_pCrit, nox_ZCrit);

 old_mdot_tank_outflow = 0.0; // reset

 first = false;
 }

 // calculate injector pressure drop and mass flowrate
 *mdot_tank_outflow = injector_model(*tank_pressure_bar, chamber_pressure_bar,
 1.0, *vapour_density,
 injector_loss_coefficient,
 false,
 &*fault);

 /* integrate mass flowrate using Addams second order integration formula */
 /* Xn=X(n-1) + DT/2 * ((3 * Xdot(n-1) - Xdot(n-2)) */
 delta_outflow_mass
 = 0.5 * delta_time * (3.0 * *mdot_tank_outflow - old_mdot_tank_outflow);

 // drain the tank based on flowrates only
 *tank_contents_mass -= delta_outflow_mass; // update mass within tank for next iteration

 // drain off vapour
 *vapour_mass -= delta_outflow_mass; // update vapour mass within tank for next iteration

 // initial guess
 current_Z_guess = compressibility_factor(*tank_pressure_bar, nox_pCrit, nox_ZCrit);

 step = 1.0 / 0.9; // initial step size
 OldAim = 2; Aim = 0; // flags used below to home-in

 // recursive loop to get correct compressibility factor
 do
 {
 // use isentropic relationships
 bob = nox_gamma - 1.0;

 Technical papers

Author: Rick Newlands 17 updated: 03/01/12

 *vapour_temperature_K = initial_vapour_temp_K
 * pow(((*vapour_mass * current_Z_guess) / (initial_vapour_mass * initial_Z)), bob);

 bob = nox_gamma / (nox_gamma - 1.0);

 *tank_pressure_bar = initial_vapour_pressure_bar
 * pow((*vapour_temperature_K / initial_vapour_temp_K), bob);

 current_Z = compressibility_factor(*tank_pressure_bar, nox_pCrit, nox_ZCrit);

 OldAim = Aim;

 if (current_Z_guess < current_Z)
 {
 current_Z_guess *= step;
 Aim = 1;
 }
 else
 {
 current_Z_guess /= step;
 Aim = -1;
 }

 /* check for overshoot of target, and if so, reduce step nearer to 1.0 */
 if (Aim == -OldAim)
 step = sqrt(step);

 /* leave loop upon convergence to required accuracy */
 }
 while (((current_Z_guess / current_Z) > 1.000001) ||
 ((current_Z_guess / current_Z) < (1.0 / 1.000001)));

 bob = 1.0 / (nox_gamma - 1.0);

 *vapour_density = initial_vapour_density
 * pow((*vapour_temperature_K / initial_vapour_temp_K), bob);
}

 Technical papers

Author: Rick Newlands 18 updated: 03/01/12

/* Subroutine to initialise main program variables */
/* Gets called only once, prior to firing */
void initialise_hybrid_engine(void)
{
 hybrid.hybrid_fault = 0;
 hybrid.tank_vapour_mass = 0.0;
 mdot_tank_outflow = 0.0;

 /* set either initial nitrous vapour (tank) pressure */
 /* or initial nitrous temperature (deg Kelvin) */
 if (hybrid.press_or_temp == true)
 hybrid.tank_fluid_temperature_K = nox_on_press(hybrid.initial_tank_pressure); /* set tank
pressure */
 else
 { /* set nitrous temperature */
 hybrid.tank_fluid_temperature_K = hybrid.initial_fluid_propellant_temp
 + CENTIGRADE_TO_KELVIN;
 hybrid.initial_tank_pressure = nox_vp(hybrid.tank_fluid_temperature_K);
 }

 /* reality check */
 if (hybrid.tank_fluid_temperature_K > (36.0 + CENTIGRADE_TO_KELVIN))
 {
 hybrid.tank_fluid_temperature_K = 36.0 + CENTIGRADE_TO_KELVIN;
 hybrid.hybrid_fault = 2;
 }

 /* get initial nitrous properties */
 hybrid.tank_liquid_density = nox_Lrho(hybrid.tank_fluid_temperature_K);
 hybrid.tank_vapour_density = nox_Vrho(hybrid.tank_fluid_temperature_K);

 /* base the nitrous vapour volume on the tank percentage ullage (gas head-space) */
 hybrid.tank_vapour_volume = (hybrid.initial_ullage / 100.0) * hybrid.tank_volume;
 hybrid.tank_liquid_volume = hybrid.tank_volume - hybrid.tank_vapour_volume;

 hybrid.tank_liquid_mass = hybrid.tank_liquid_density * hybrid.tank_liquid_volume;
 hybrid.tank_vapour_mass = hybrid.tank_vapour_density * hybrid.tank_vapour_volume;

 hybrid.tank_propellant_contents_mass = hybrid.tank_liquid_mass
 + hybrid.tank_vapour_mass; /* total mass within tank
*/

 /* initialise values needed later */
 old_liquid_nox_mass = hybrid.tank_liquid_mass;
 old_vapour_nox_mass = hybrid.tank_vapour_mass;
 hybrid.initial_liquid_propellant_mass = hybrid.tank_liquid_mass;
 hybrid.initial_vapour_propellant_mass = hybrid.tank_vapour_mass;

 /* guessed initial value of amount of nitrous vaporised per iteration */
 /* in the nitrous tank blowdown model (actual value is not important) */
 vaporised_mass_old = 0.001;

 /* individual injector orifice total loss coefficent K2 */
 bob = PI * SQR((hybrid.orifice_diameter / 2.0)); /* orifice cross sectional area */

 Technical papers

Author: Rick Newlands 19 updated: 03/01/12

 hybrid.injector_loss_coefficient
 = (hybrid.orifice_k2_coefficient / (SQR((hybrid.orifice_number * bob))))
 * PASCALS_TO_BAR;
}

 Technical papers

Author: Rick Newlands 20 updated: 03/01/12

References:
Ref. 1: Dr Bruce P. Dunn

University of British Columbia and Dunn Engineering

Several articles on self pressurised peroxide rockets and experiments on propane tanks, as well as email

communications with the author on the subject of numerical modelling of the tank emptying process;

many thanks.

Ref. 2: Engineering Sciences Data Unit (ESDU) sheet 91022,

Thermophysical properties of nitrous oxide.

Available in hardcopy from some U.K. University libraries, or accessible over the Web to students with

an ATHENS password.

Ref. 3: Space Propulsion Analysis and Design

by Ronald .W. Humble, Gary .N. Henry and Wiley J. Larson

McGraw Hill Space Technology Series ISBN 0-07-031320-2

Ref. 4: Rocket Propulsion Elements 7
th

 edition

By Sutton and Biblarz

