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Simulating a Nitrous oxide rocket engine run-tank 

Introduction 
This paper describes mathematical models of the emptying of a tank of saturated nitrous oxide that 
empties purely due to its self-pressure. This is sometimes called a ‘Vapak’ process (powered by vapour 
pressure alone). 

Firstly, read our ‘The physics of nitrous oxide’ paper as it covers the processes we’ll be modelling herein. 

The mathematical model of the liquid phase emptying is based on a model of saturated propane 
emptying from a tank devised by Dr Bruce Dunn (Ref. 1). Aspirespace gratefully acknowledges the help 
we received from Dr Dunn in the preparation of our nitrous tank model. 

The mathematical model of the vapour phase emptying is our own work. 

 

The nitrous rocket engine as a coupled system 
The emptying process is iterative with time, and it’s strongly coupled to the combustion chamber 
pressure. 

Therefore, the simulation of the run-tank emptying has to be coupled to a simulation of the 
combustion chamber and nozzle throat of the rocket engine that it’s feeding. 

The ensuing feedback loops of a nitrous rocket 
engine emptying its liquid phase are as follows: 

• Liquid nitrous flows out of the tank causing a 
drop in the level of the liquid nitrous. This causes 
an increase in the ‘head space’ (the volume at 
the top of the run-tank) of nitrous vapour above 
the liquid level. 

• The nitrous vapour pressure drops due to this 
expansion. 

• Some of the liquid nitrous then vaporises to try to 
raise the vapour pressure back up. 

• The energy required to vaporise the liquid comes 
from the liquid itself, and so its temperature 
drops. 

• This lower temperature lowers the tank pressure 
because vapour pressure is a function of 
temperature. 

• The flow rate of nitrous out of the tank depends on the difference between the tank and combustion 
chamber pressure. 

• The combustion chamber pressure depends on the fuel-to-oxidiser ratio, the gain of mass within the 
chamber (fuel flow rate + ox flow rate – flow rate out the nozzle), and the nozzle throat area. 
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1: A mathematical model of the liquid phase emptying 
When the nitrous vapour expands due to the level of the liquid dropping, the pressure drops due to 
this expansion. 

We don’t need to know what this pressure drop is to model the tank emptying, instead we estimate 
how much mass ∆𝒎𝒎𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 of nitrous liquid has been vaporised (in one time iteration) in its attempt 
to raise the pressure back up again to as it was. 

This is an iterative process; we pick an arbitrary non-zero value for ∆𝒎𝒎𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 to start with, and run 
with it: the program quickly converges on the correctly balanced value, staying with it as it changes 
during the tank emptying process. 

The first step is to calculate the heat removed ∆𝑄𝑄 from the liquid nitrous during its vaporisation: 

∆𝑸𝑸 = ∆𝒎𝒎𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 𝑯𝑯𝒗𝒗  (equ. 1.1)     

where 𝐻𝐻𝑣𝑣 is the enthalpy (latent heat) of vaporisation evaluated at the current nitrous temperature.  

We then calculate the temperature drop of the remaining mass of liquid nitrous in the run-tank mliquid 
due to losing this heat:  

  ∆𝑻𝑻 = ∆𝑸𝑸
𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 𝑪𝑪𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗

  (equ. 1.2)     

where Cliquid is the Specific heat capacity of liquid nitrous at the current temperature. 

We then subtract this temperature drop from the current liquid nitrous temperature to get a new lower 
liquid nitrous temperature. 

The liquid density 𝜌𝜌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, the vapour density 𝜌𝜌𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑙𝑙𝑣𝑣, and the vapour pressure (tank pressure) are 
now recalculated from tables of Nitrous properties based on this lower temperature. 

Using this new tank pressure and the current combustion chamber pressure, the mass flow rate of 
liquid nitrous out of the tank �̇�𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 is now calculated, which is based on the flow through the rocket 
engine injector it feeds: 

 

Injector mass flow rate 

We want to calculate the mass flow rate of liquid propellant that will flow through an injector due to a 
pressure ∆P across it. Directly upstream of the injector face is the plumbing section known as the 
injector manifold. 

We start with Bernoulli’s equation (an energy equation which describes pressure as a form of 
potential energy and flow velocity as kinetic energy) for the flow of liquid from the injector manifold 
into the injector orifices: 

𝑷𝑷𝒎𝒎𝒗𝒗𝒎𝒎𝒗𝒗𝒎𝒎𝒗𝒗𝒍𝒍𝒗𝒗 + 𝟏𝟏
𝟐𝟐
𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 𝑽𝑽𝒎𝒎𝒗𝒗𝒎𝒎𝒗𝒗𝒎𝒎𝒗𝒗𝒍𝒍𝒗𝒗𝟐𝟐 = 𝑷𝑷𝒗𝒗𝒗𝒗𝒗𝒗𝒎𝒎𝒗𝒗𝒐𝒐𝒗𝒗 + 𝟏𝟏

𝟐𝟐
𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 𝑽𝑽𝒗𝒗𝒗𝒗𝒗𝒗𝒎𝒎𝒗𝒗𝒐𝒐𝒗𝒗𝟐𝟐 = 𝒐𝒐𝒗𝒗𝒎𝒎𝒗𝒗𝒄𝒄𝒗𝒗𝒎𝒎𝒄𝒄   (equ. 1.3)     

As the liquid leaves the injector orifices, it breaks into droplets without changing pressure, so Porifice  
equals the combustion chamber pressure. 
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Substituting for the velocity V of the liquid from a rearrangement of the mass continuity equation:  

𝑽𝑽 = �̇�𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗

𝑨𝑨 𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗
    (equ. 1.4)     

where �̇�𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  is the mass flow rate of liquid, A is the cross-sectional area of either the manifold or 
injector orifice, and 𝜌𝜌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the liquid density, 

gives:  

𝑷𝑷𝒗𝒗𝒗𝒗𝒗𝒗𝒎𝒎𝒗𝒗𝒐𝒐𝒗𝒗 − 𝑷𝑷𝒎𝒎𝒗𝒗𝒎𝒎𝒗𝒗𝒎𝒎𝒗𝒗𝒍𝒍𝒗𝒗 = ∆𝑷𝑷 =
𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗  �̇�𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗

𝟐𝟐

𝟐𝟐 𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗
𝟐𝟐 � 𝑲𝑲

�𝑵𝑵 𝑨𝑨𝒗𝒗𝒗𝒗𝒗𝒗𝒎𝒎𝒗𝒗𝒐𝒐𝒗𝒗�
𝟐𝟐 −

𝟏𝟏
𝑨𝑨𝒎𝒎𝒗𝒗𝒎𝒎𝒗𝒗𝒎𝒎𝒗𝒗𝒍𝒍𝒗𝒗
𝟐𝟐 �    

                                         =  �̇�𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗
𝟐𝟐

𝟐𝟐 𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗
� 𝑲𝑲

�𝑵𝑵 𝑨𝑨𝒗𝒗𝒗𝒗𝒗𝒗𝒎𝒎𝒗𝒗𝒐𝒐𝒗𝒗�
𝟐𝟐 −

𝟏𝟏
𝑨𝑨𝒎𝒎𝒗𝒗𝒎𝒎𝒗𝒗𝒎𝒎𝒗𝒗𝒍𝒍𝒗𝒗
𝟐𝟐 �     (equ. 1.5)     

where N is the number of orifices. 

Note the inclusion of a ‘flow resistance coefficient’ K, which is related to a traditional discharge 
coefficient as: 

𝑪𝑪𝒗𝒗𝒗𝒗𝒗𝒗 = 𝟏𝟏
√𝑲𝑲

     (equ. 1.6)     

As the static pressure of the Nitrous liquid drops as it passes through the orifices, it vaporizes. This 
means that what flows through the injector is a foam of liquid and bubbles - but mostly vapour - and 
so traditional tables of loss values or discharge coefficients don’t work for this mixed fluid. You have 
to tailor this K coefficient until the time taken to empty the tank matches your own test firing results.  

We’ve found that a good starting value for K is 2.0 for Nitrous oxide and other just-subcritical 

propellants. (Therefore 𝑪𝑪𝒗𝒗𝒗𝒗𝒗𝒗 = 𝟏𝟏
√𝑲𝑲

= 𝟏𝟏
√𝟐𝟐

= 𝟎𝟎.𝟕𝟕𝟎𝟎𝟕𝟕) 

 
Rearranging, and assuming that 𝐴𝐴𝑚𝑚𝑣𝑣𝑚𝑚𝑙𝑙𝑚𝑚𝑣𝑣𝑙𝑙𝑙𝑙2   is ‘infinitely’ larger than (the square of) an injector orifice 
area gives: 

�̇�𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 = 𝑵𝑵 𝑨𝑨𝒗𝒗𝒗𝒗𝒗𝒗𝒎𝒎𝒗𝒗𝒐𝒐𝒗𝒗�
𝟐𝟐 𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 𝚫𝚫𝑷𝑷

𝑲𝑲
       (equ. 1.7)     

 

Grouping terms in this equation allows the entire injector plate to be described by a ‘Loss factor’, 
which we’ve found useful for comparison with actual injector flow test data: 

�̇�𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 = �𝟐𝟐 𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 𝚫𝚫𝑷𝑷
𝑭𝑭𝒍𝒍𝒗𝒗𝒗𝒗𝒗𝒗

    where   𝑭𝑭𝒍𝒍𝒗𝒗𝒗𝒗𝒗𝒗 = 𝑲𝑲

�𝑵𝑵 𝑨𝑨𝒗𝒗𝒗𝒗𝒗𝒗𝒎𝒎𝒗𝒗𝒐𝒐𝒗𝒗�
𝟐𝟐 = 𝟏𝟏

�𝑪𝑪𝒗𝒗𝒗𝒗𝒗𝒗 𝑵𝑵 𝑨𝑨𝒗𝒗𝒗𝒗𝒗𝒗𝒎𝒎𝒗𝒗𝒐𝒐𝒗𝒗�
𝟐𝟐  (equ.s 1.8)     

 

Alternatively, further rearrangement gives us the number of orifices required for a particular mass flow 
rate: 
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𝑵𝑵 = �̇�𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗

𝑨𝑨𝒗𝒗𝒗𝒗𝒗𝒗𝒎𝒎𝒗𝒗𝒐𝒐𝒗𝒗�
𝟐𝟐 𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 𝚫𝚫𝑷𝑷

𝑲𝑲

    (equ. 1.9) 

 
Feed system 
The feed plumbing between the run-tank and the injector manifold also suffers a loss, which needs 
accounting for.  

Every feed system has its own geometry and loss characteristics: the differences between your static 
test stand plumbing and your flight vehicle’s plumbing are so great that loss characteristics data from 
one cannot be used for the other. You need to calibrate both. We strive to keep the flight vehicle’s 
plumbing losses as small as possible by minimising ‘stuff’ and by avoiding sudden changes in flow 
cross-sectional area. 

The easiest way to model the feed system is to add an additional Loss factor. We can visualize the 
system of feed plumbing plus injector as two electrical resistors in series, where pressure drop acts as 
voltage drop, and Loss factor is the analogue of resistance: 

𝑰𝑰 = 𝑽𝑽
𝑹𝑹

= 𝑽𝑽
𝑹𝑹𝒎𝒎𝒗𝒗𝒗𝒗𝒗𝒗 + 𝑹𝑹𝒗𝒗𝒎𝒎𝒊𝒊𝒗𝒗𝒐𝒐𝒄𝒄𝒗𝒗𝒗𝒗

     is the electrical analogue of:     
�̇�𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗
𝟐𝟐

𝟐𝟐 𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗
=  𝚫𝚫𝑷𝑷

𝑭𝑭𝒍𝒍𝒗𝒗𝒗𝒗𝒗𝒗
=  𝚫𝚫𝑷𝑷

𝑭𝑭𝒍𝒍𝒗𝒗𝒗𝒗𝒗𝒗_𝒎𝒎𝒗𝒗𝒗𝒗𝒗𝒗 + 𝑭𝑭𝒍𝒍𝒗𝒗𝒗𝒗𝒗𝒗_𝒗𝒗𝒎𝒎𝒊𝒊𝒗𝒗𝒐𝒐𝒄𝒄𝒗𝒗𝒗𝒗
  

  (equ.s 1.10) 
       
Δ𝑃𝑃 is now the pressure drop between run-tank and combustion chamber: 

𝚫𝚫𝑷𝑷 =  𝚫𝚫𝑷𝑷𝒎𝒎𝒗𝒗𝒗𝒗𝒗𝒗 +  𝚫𝚫𝑷𝑷𝒗𝒗𝒎𝒎𝒊𝒊𝒗𝒗𝒐𝒐𝒄𝒄𝒗𝒗𝒗𝒗      (equ. 1.11) 

Again, we’re assuming that (the square of) one cross-sectional area is ‘infinitely’ larger than the other; 
in this case the run-tank versus the feed system plumbing. 

𝑨𝑨𝒗𝒗𝒍𝒍𝒎𝒎−𝒄𝒄𝒗𝒗𝒎𝒎𝒕𝒕𝟐𝟐 ≫ 𝑨𝑨𝒎𝒎𝒗𝒗𝒎𝒎𝒗𝒗𝒎𝒎𝒗𝒗𝒍𝒍𝒗𝒗𝟐𝟐 ≫ 𝑵𝑵𝟐𝟐𝑨𝑨𝒗𝒗𝒗𝒗𝒗𝒗𝒎𝒎𝒗𝒗𝒐𝒐𝒗𝒗𝟐𝟐      (equ. 1.12) 

Using a Loss factor to describe the entire feed system avoids having to worry about all the changes in 
cross-sectional area along the test-stand plumbing. 

 

Inside the run-tank 

Having calculated the mass flow rate of liquid nitrous out of the tank, we can integrate it to get the 
mass that has left the run-tank over each time iteration dt: 

Liquid mass mliquid has decreased by: 

∆𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 = ∫ �̇�𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 𝒗𝒗𝒄𝒄      (equ. 1.13)   

And from the law of mass continuity, the total nitrous mass within the run-tank has also decreased by 
this amount. 
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The resulting new value for mliquid is the mass of liquid that would now be in the tank if the nitrous 
didn’t react to the expansion of the nitrous vapour and the ensuing drop in pressure. We’ll designate 
this as mliquid_unphased: 

𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗_𝒍𝒍𝒎𝒎𝒗𝒗𝒖𝒖𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 = 𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 − ∆𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗        (equ. 1.14)   

 

But the nitrous does react, both to the increase in nitrous volume and the drop in temperature. We 
now need to calculate how it responds: 

The densities of the liquid and vapour are functions of temperature only, so the nitrous is forced to 
follow a run-tank internal volume formula: 

Vvapour + Vliquid = Vtank    or:   
𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗

𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗
+ 𝒎𝒎𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒍𝒍𝒗𝒗

𝝆𝝆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒍𝒍𝒗𝒗
= 𝑽𝑽𝒄𝒄𝒗𝒗𝒎𝒎𝒕𝒕       (equ. 1.15)   

Where ρ is density, m is mass. 

The resulting changes in the proportions of the two phases can then be calculated by rearranging this 
equation: 

𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 = 𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 �𝑽𝑽𝒄𝒄𝒗𝒗𝒎𝒎𝒕𝒕 −
𝒎𝒎𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒍𝒍𝒗𝒗

𝝆𝝆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒍𝒍𝒗𝒗
�        (equ. 1.16)   

substituting equation 1.14:  

𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 = 𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 �𝑽𝑽𝒄𝒄𝒗𝒗𝒎𝒎𝒕𝒕 −
�𝒎𝒎𝒄𝒄𝒗𝒗𝒄𝒄𝒗𝒗𝒍𝒍 − 𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗�

𝝆𝝆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒍𝒍𝒗𝒗
�        (equ. 1.17)   

collecting terms:       

𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 �𝟏𝟏 −
𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗
𝝆𝝆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒍𝒍𝒗𝒗

� = 𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 �𝑽𝑽𝒄𝒄𝒗𝒗𝒎𝒎𝒕𝒕 −
𝒎𝒎𝒄𝒄𝒗𝒗𝒄𝒄𝒗𝒗𝒍𝒍
𝝆𝝆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒍𝒍𝒗𝒗

�        (equ. 1.18)   

dividing by 𝜌𝜌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙:  

𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 �
𝟏𝟏

𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗
− 𝟏𝟏

𝝆𝝆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒍𝒍𝒗𝒗
� = �𝑽𝑽𝒄𝒄𝒗𝒗𝒎𝒎𝒕𝒕 −

𝒎𝒎𝒄𝒄𝒗𝒗𝒄𝒄𝒗𝒗𝒍𝒍
𝝆𝝆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒍𝒍𝒗𝒗

�        (equ. 1.19)   

gives: 

𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗 =
�𝑽𝑽𝒄𝒄𝒗𝒗𝒎𝒎𝒕𝒕 − 

𝒎𝒎𝒄𝒄𝒗𝒗𝒄𝒄𝒗𝒗𝒍𝒍
𝝆𝝆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒍𝒍𝒗𝒗

�

� 𝟏𝟏
𝝆𝝆𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗

 − 𝟏𝟏
𝝆𝝆𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒍𝒍𝒗𝒗

�
        and    𝒎𝒎𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒍𝒍𝒗𝒗 = 𝒎𝒎𝒄𝒄𝒗𝒗𝒄𝒄𝒗𝒗𝒍𝒍 −𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗       (equs. 1.20)    

  

We’ll designate this new volume-adjusted value as mliquid_new. 

From mass continuity, the discrepancy between mliquid_new and mliquid_unphased has to be the mass of 
Nitrous that has been vaporised by the phase changes: 

mvaporised = mliquid_unphased - mliquid_new    (equ. 1.21)     
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Now, previous incarnations of our tank-emptying software model used simple integration rather than 
Trapezoidal integration and this running mvaporised calculation was unstable. We therefore had to 
numerically stabilise it, with a filter known as a first-order time lag.  

Providentially, it transpired that the real-world nitrous vaporisation process isn’t instantaneous, and a 
time lag of about 0.15 seconds gives a good match with our run-tank test data.  

So this time lag remains: 

𝒄𝒄𝒗𝒗𝒎𝒎𝒗𝒗_𝒐𝒐𝒗𝒗𝒎𝒎𝒗𝒗𝒄𝒄𝒗𝒗𝒎𝒎𝒄𝒄 = ∆𝒄𝒄
𝟎𝟎.𝟏𝟏𝟏𝟏

  

𝑨𝑨 = 𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗_𝒍𝒍𝒎𝒎𝒗𝒗𝒖𝒖𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 − 𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗  

𝑩𝑩 = 𝑩𝑩𝒄𝒄−𝟏𝟏 +  𝒄𝒄𝒗𝒗𝒎𝒎𝒗𝒗_𝒐𝒐𝒗𝒗𝒎𝒎𝒗𝒗𝒄𝒄𝒗𝒗𝒎𝒎𝒄𝒄 (𝑨𝑨 − 𝑩𝑩𝒄𝒄−𝟏𝟏)  

𝒎𝒎𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 = 𝑩𝑩  

(equ.s 1.22)     

 

With this new running value for mvaporised we can proceed to the next time iteration, and begin the 
calculation loop again. 

 

N.B. Bear in mind that this model is an approximation only. Occasionally, the model goes awry just as 
the last of the liquid nitrous is emptying. Add the following check to catch this, and use it to trigger 
engine burnout: 

if (mliquid_new > mliquid_unphased) then trigger burnout. 

 

Nitrous roulette 

We’ve recently added a new precursor to the above tank-emptying model, attempting to model those 
bipropellant engines that use the nitrous vapour pressure to pressurise the fuel tank via a (hopefully) 
impermeable piston or bladder. This precursor accounts for the effective rate of increase of the nitrous 
run-tank volume as a volumetric flow rate of liquid fuel is expelled from its run-tank: 

�𝒗𝒗𝑽𝑽
𝒗𝒗𝒄𝒄
�
𝒗𝒗𝒐𝒐_𝒄𝒄𝒗𝒗𝒎𝒎𝒕𝒕

= �̇�𝑽𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍    where:   �̇�𝑽𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍 = �̇�𝒎𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍

𝝆𝝆𝒎𝒎𝒍𝒍𝒗𝒗𝒍𝒍
        with ρ being density.   (equ.s 1.23)     

 

This is time-integrated to get the current oxidiser run-tank volume to feed into the above tank-
emptying  model: 

𝑽𝑽𝒗𝒗𝒐𝒐_𝒄𝒄𝒗𝒗𝒎𝒎𝒕𝒕 = ∫ �𝒗𝒗𝑽𝑽𝒗𝒗𝒄𝒄�𝒗𝒗𝒐𝒐_𝒄𝒄𝒗𝒗𝒎𝒎𝒕𝒕
𝒗𝒗𝒄𝒄    (equ. 1.24)     

 We don’t as yet have test data from firings of such biprops so this precursor isn’t yet validated. 
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2: A mathematical model of the vapour-only phase emptying 

After all the liquid nitrous has run out of the run-tank, there will still be some vapour remaining. Even if 
you started with a tank completely full of liquid, some vapour will be created as the tank empties. 

This vapour is dense enough for combustion and so produces thrust, though it burns fuel-rich (too 
little oxidiser), and this ‘vapour-only’ phase doesn’t last long. 

 

From our test-firing data, we’ve learned a few surprising things about this ‘vapour-only’ phase of 
combustion: 

1) It transpires that the pressure loss that occurs as the vapour flows through the injector orifices 
is identical to when the liquid was flowing through it (the K coefficient is the same). This 
proves that the liquid vaporises almost completely to vapour inside the orifices, assuming that 
you use numerous small orifices as we did. 

2) The vapour emptying out of the run-tank can be modelled as an Isentropic process. That 
means that very little energy is wasted (increase of entropy) during the emptying, and no heat 
is transferred from the tank walls to the vapour. 

3) Therefore the vapour pressure and temperature drop rapidly as the tank empties and the 
vapour expands. 

4) The vapour is not an ideal gas. Intermolecular forces (the forces between the vapour 
molecules) are noticeably at work, so nitrous vapour expands differently to that of an ideal 
gas. 

 

With the above in mind, a simple mathematical model can simulate the tank emptying of nitrous 
vapour, which is now described: 

Historically, we modelled the vapour-only run-tank emptying process as a classic Isentropic process, 
but fudged to account for the real gas behaviour of the nitrous vapour; this appeared to work as it 
matched our test-data very well. 

To our relief, Ref. 5 confirms that this approach was valid, and suggests new parameters to 
generalise the isentropic parameter 𝛾𝛾, albeit requiring hard-to-obtain thermophysical data. 
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Our pragmatic approach involved 
data that we did have, such as 
Nitrous oxide’s Compressibility 
factor (Z). Its graph is shown 
here: 

Our sims show that the nitrous 
vapour travels up the blue-
coloured saturated vapour line 
as it empties from the run-tank 
and loses pressure. 

We can approximate this vapour 
curve as the straight line 
(coloured red) running from the 
Critical point up to the point 
(0,1) at zero pressure.  

Thus, the compressibility factor 
can be modelled essentially as a 
linear function of tank vapour 
pressure. 

 

 

We begin the vapour-only phase-emptying model by snapshotting the compressibility factor just as 
the liquid phase has run out. 

Then we calculate the mass flow rate of nitrous vapour out of the tank using equations 1.8, but 
working with vapour instead of liquid. The loss coefficient K in equations 1.8 remains the same 
though. 

 

Both the nitrous mass within the run-tank, and the run-tank internal volume, are known at each time 
iteration, so we calculate their quotient, which is the current nitrous vapour density: 

𝝆𝝆𝒎𝒎𝒗𝒗𝒄𝒄𝒗𝒗𝒗𝒗𝒍𝒍𝒗𝒗 = 𝒎𝒎𝒎𝒎𝒗𝒗𝒄𝒄𝒗𝒗𝒗𝒗𝒍𝒍𝒗𝒗
𝑽𝑽𝒗𝒗𝒍𝒍𝒎𝒎−𝒄𝒄𝒗𝒗𝒎𝒎𝒕𝒕

   (equ. 2.1) 

 

Next, the vapour emptying can be approximated as an Isentropic process. The inter-relationships 
between P, T, and ρ for an isentropic process are the standard Isentropic equations: 

𝒗𝒗𝑻𝑻
𝑻𝑻

= �𝜸𝜸−𝟏𝟏
𝜸𝜸

 � 𝒗𝒗𝑷𝑷
𝑷𝑷

= (𝜸𝜸 − 𝟏𝟏) 𝒗𝒗𝝆𝝆
𝝆𝝆

     or:     𝑻𝑻𝟐𝟐
𝑻𝑻𝟏𝟏

= �𝑷𝑷𝟐𝟐
𝑷𝑷𝟏𝟏
�
𝜸𝜸−𝟏𝟏
𝜸𝜸 = �𝝆𝝆𝟐𝟐

𝝆𝝆𝟏𝟏
�
𝜸𝜸−𝟏𝟏

   (equ.s 2.2)   

where γ is the ratio of specific heats which has value 1.3 for nitrous vapour (averaged over the 
subcritical temperature range of interest). 

We’ll take state 1 as the ‘old’ values from the previous time iteration, and state 2 as the current time 
iteration. 



 

 Technical papers   

 

Author: Rick Newlands 9 updated: 05/03/25 

 

 

 

Starting with the equation for a real gas: 

𝑷𝑷 = 𝒁𝒁𝝆𝝆𝑹𝑹𝑻𝑻    (equ. 2.3)   

Then: 

𝑷𝑷𝟐𝟐
𝑷𝑷𝟏𝟏

= �𝒁𝒁𝟐𝟐
𝒁𝒁𝟏𝟏
� �𝝆𝝆𝟐𝟐

𝝆𝝆𝟏𝟏
� �𝑹𝑹𝟐𝟐

𝑹𝑹𝟏𝟏
� �𝑻𝑻𝟐𝟐

𝑻𝑻𝟏𝟏
�   (equ. 2.4)    where R is the specific gas constant for nitrous. 

If we assume that R doesn’t notably change with time, then R2 = R1 and that term drops out. 

Using equ.s 2.2 to substitute density for temperature gives: 

𝑷𝑷𝟐𝟐
𝑷𝑷𝟏𝟏

= �𝒁𝒁𝟐𝟐
𝒁𝒁𝟏𝟏
� �𝝆𝝆𝟐𝟐

𝝆𝝆𝟏𝟏
� �𝝆𝝆𝟐𝟐

𝝆𝝆𝟏𝟏
�
𝜸𝜸−𝟏𝟏

=  �𝒁𝒁𝟐𝟐
𝒁𝒁𝟏𝟏
� �𝝆𝝆𝟐𝟐

𝝆𝝆𝟏𝟏
�
𝜸𝜸
      (equ.s 2.5)    

 

Rearranging equ. 2.3 for temperature similarly gives: 

�𝑻𝑻𝟐𝟐
𝑻𝑻𝟏𝟏
� = �𝑷𝑷𝟐𝟐

𝑷𝑷𝟏𝟏
�
−𝟏𝟏
�𝒁𝒁𝟐𝟐
𝒁𝒁𝟏𝟏
�
−𝟏𝟏
�𝝆𝝆𝟐𝟐
𝝆𝝆𝟏𝟏
�
−𝟏𝟏

= �𝝆𝝆𝟐𝟐
𝝆𝝆𝟏𝟏
�
𝜸𝜸
�𝒁𝒁𝟐𝟐
𝒁𝒁𝟏𝟏
�
−𝟏𝟏
�𝝆𝝆𝟐𝟐
𝝆𝝆𝟏𝟏
�
−𝟏𝟏

= �𝒁𝒁𝟐𝟐
𝒁𝒁𝟏𝟏
�
−𝟏𝟏
�𝝆𝝆𝟐𝟐
𝝆𝝆𝟏𝟏
�
𝜸𝜸−𝟏𝟏

    (equ.s 2.6) 

 

There is one problem though: we need to calculate Z2 in equ.s 2.4 and 2.6, but this depends upon P2, 
the vapour pressure at time 2, which we calculate after calculating these equations. 

So we need to resort to recursion: we continuously re-calculate a ‘running’ Z2 

based on the previous time iteration’s tank pressure. 

 

3: Sim results 
When coupled to a sim of the 
combustion chamber, the results of 
the above tank emptying simulation 
models give a good match with our 
experimental test-firing data: 
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Glossary: 
Bernoulii’s principle:  Is just a statement of the Law of Conservation of Energy couched in fluid 
dynamic terms, and is expressed by his equation: 

𝑷𝑷 + 𝟏𝟏
𝟐𝟐
𝝆𝝆 𝑽𝑽𝟐𝟐 = constant    or:   ∆𝑷𝑷 = −𝟏𝟏

𝟐𝟐
𝝆𝝆 ∆𝑽𝑽𝟐𝟐   

where P is pressure, ρ is density, and V is flow velocity. 

Drag: (archaic: ‘air resistance’) is the retarding force experienced by bodies travelling through a fluid 
(gas or liquid).  

Injector manifold: the section of plumbing immediately upstream of the injector plate. This is usually 
a divergent section in order to raise the (subsonic) flow pressure. 

Injector plate: the section of combustion chamber wall incorporating the injector orifices. 

Isentropic process: a physical process (such as an expansion) that occurs without change in flow 
Entropy. Whilst this doesn’t happen in reality, many gas processes are almost Isentropic. 

Mach number:  The vehicle’s airspeed V (or the local airspeed around a nose or fin) compared to the 
speed of sound ‘a’ in the atmosphere: 

𝑴𝑴 = 𝑽𝑽
𝒗𝒗
  

Mass continuity equation: describes the Law of mass continuity applied to the flow through a pipe. If 
we measure the flow of fluid mass passing any particular point along the pipe which has cross-
sectional area A, then: 

�̇�𝒎 = 𝝆𝝆 𝑨𝑨 𝑽𝑽  

where �̇�𝑚 is Newton’s fluxion symbolism for 𝑙𝑙𝑚𝑚
𝑙𝑙𝑑𝑑

, the time rate of change of mass, known as the mass 
flow rate. ρ and V are the fluid density and velocity at that point in the pipe. 

Subsonic:  Vehicle airspeed is below Mach 1 (see Mach number). 

Supersonic:  Vehicle airspeed is above Mach 1 (see Mach number). 
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