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The mass properties of a hybrid’s liquid propellant 
 

Introduction 
It can be tedious to work out the mass properties (Centre of Gravity and moment of inertias) 
of a rocket vehicle incorporating a hybrid engine, because of the liquid and vapour in the 
hybrid’s propellant tank. (If the propellant is nitrous oxide, then the vapour is heavy and must 
be included in the CG calculations.) 
 
This paper derives mass property equations for the propellant within three types of tank, each 
with a different end-dome (the end of the tank): flat end-domes, hemispherical end-domes, 
and end-domes that are a 45 degree cone. This should cover the majority of commercial and 
home-made end-domes you are likely to encounter. 
 
Equations for the propellant only are derived, as the mass properties of the empty tank can be 
directly measured, e.g. the tank can be modelled as a compound (physical) pendulum. This 
will give the moment of inertia as follows: 
Suspend the tank on the points of a pair of pins and let the tank swing as a pendulum. (Don’t 
use large swings, small swings are more accurate). 
Measure the time taken for a swing (measure 10 swings and divide by 10 for accuracy). 
The moment of inertia about the pins pivot point is then found from the equation for a physical 
pendulum: 

      
     

   
 

 

Where  is the period of each swing in seconds, m is the tank mass, g is 9.81 m/sec
2
 and h is 

the distance between the pivot pins and the tank’s CG. 
This gives the moment of inertia about the pins pivot, but you have to convert this to get the 
moment of inertia about the vehicle CG using the parallel axes theorem (see part 2). 
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Part 1: Centre of Gravity calculations 
 
 
A tank with flat end-domes: 
This is the simplest case as the tank is a simple cylinder.  
The liquid height is the liquid volume divided by the tank 

cross-sectional area (     ). 
The centre of gravity of the liquid and vapour are halfway to 
the liquid height: (the chequered circle is the CG symbol). 
 
To get the overall CG, simply add them as: 
 
                           

                       
 

 

  
                             

          
   

 
Where L1 and L2 are the distances to the liquid and vapour CG’s, measured from a common 
reference point such as the bottom of the tank. 
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A tank with 45 degree cone end-domes: 
In this case, split the tank into three components: the end-domes and the central cylindrical 
section. The CG of the central cylindrical section is the same as the flat-ended tank above, so 
it remains to calculate the CG’s of the end-domes. 
 
 
Case 1: lower end-dome partially full of liquid 
Firstly, we need to calculate the volume 
of a 45 degree cone (where h = r) with 
its origin at the tip of the cone. 
This is the integral of elemental volume 
dV which has elemental height dx 
 
dV can be taken to be a circular disk of 
radius y and thickness dx, so: 

           
And incremental area              
for a 45 degree cone as it has slope x =  
y. 
 

So:   ∫        
 

 
 ∫        

 

 
 *

  

 
+
 

 

  
  

 
 

 
Now we can find the liquid height h by rearranging this formula : 

  (
  

 
)

 

 
  where V is the liquid volume. 

 

The vapour volume is then the end-dome volume (  
  

 
  minus the liquid volume. 

 
 
To find the liquid CG, first find the liquid moment (liquid mass times CG). 
This is the integral of the elemental liquid moment xdm (where dm is an elemental liquid mass 

with volume dV and liquid density ): 
 

       ∫               
 

 
                      for a 45 degree cone as 

before. 

So: ∫       
 

 
  ∫       

 

 
  *
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To find the resulting liquid CG, divide this moment by the liquid mass, which is the above 
liquid volume times the liquid density. This gives the CG relative to the tip of the lower cone. 
 

Similarly, the vapour moment is: ∫       
 

 
  ∫       

 

 
  *

  

 
+
 

 

   (
  

 
 

  

 
) 

Where R is the radius of the top of the cone (tank radius). 
To find the resulting CG, divide this moment by the vapour mass, which is the above vapour 
volume times the vapour density. This gives the CG relative to the tip of the lower cone. 
 
 
Case 2: lower end-dome completely full of liquid 

From case 1, the liquid moment is: ∫       
 

 
  ∫       

 

 
  *

  

 
+
 

 

   
  

 
 

Where R is the radius of the top of the cone (tank radius). 
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To find the resulting liquid CG, divide this moment by the liquid mass, which is the end-dome  

volume (  
  

 
  times the liquid density. This gives the answer: liquid CG = 

 

 
  

This gives the CG relative to the tip of the lower cone. 
 
The vapour moment is zero as there is no vapour. 
 
 
Case 3: upper end-dome partially full of liquid 
Firstly, we need to calculate the volume of a 
45 degree cone (where h = r) with its origin at 
the base of the cone. 
If the base radius is R and has height R, then 
the radius at distance x from the base is 
given by y = R - x. 
 
This is the integral of elemental volume dV 
which has elemental height dx, so: 

          
And incremental area         

  (       =  (           
 

So:   ∫        
 

 
 ∫ (              

 

 
 

  *        
  

 
+
 

 

  (         
  

 
) 

 
Finding the liquid height h from this volume formula involves solving a cubic equation in h. 
This is possible (see http://www.1728.com/cubic.htm) but is extremely tedious. 
It’s easier to program a search routine to home-in on the answer.  
You could enter the volume formula into a spreadsheet, and manually adjust the liquid height 
until the volume is correct to your required accuracy. 
Or you could program an automatic search: you could use Newton’s method, but I use the 
following simple routine that could be coded into a spreadsheet: 
 

1. Initial step size is ¼ of R, initial h is zero, set old_aim = aim = 0 
2. Reality check: if h > R then set h = R and halve the step size. Similarly, if h < 0 set h 

= 0 and halve the step size. 
3. Calculate liquid volume using h 
4. Set old_aim = aim 
5. If liquid volume is too small then increase h by step size and set aim = 1 
6. Else if liquid volume is too large then decrease h by step size and set aim = -1 
7. Check for overshoot of target: if aim = -1 times old_aim then halve the step size. 
8. Go back to step 2 and repeat until the volume is correct to your required accuracy. 

 
This homes-in on the correct h quickly. 
 

The vapour volume is then the end-dome volume (  
  

 
  minus the liquid volume. 

 
Now, to find the liquid CG, first find the liquid moment (liquid mass times CG). 

This is the integral of the elemental liquid moment xdm (with liquid density ): 
 

       ∫               
 

 
                       

  (      =  (           for a 45 degree cone as before. 
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So: ∫       
 

 
  ∫  (                ∫ (                

 

 

 

 
 

 

   *  
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Where R is the radius of the base of the cone (tank radius). 
To find the resulting liquid CG, divide this moment by the liquid mass, which is the above 
liquid volume times the liquid density. This gives the CG relative to the base of the upper 
cone. 
 
Similarly, the vapour moment is: 

 ∫       
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Where R is the radius of the base of the cone (tank radius). 
To find the resulting CG, divide this moment by the vapour mass. This gives the CG relative 
to the base of the upper cone. 
 
 
Case 4: upper end-dome completely full of liquid 
From case 3, the liquid moment is:  
 

 ∫       
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Where R is the radius of the base of the cone (tank radius). 
 
To find the resulting liquid CG, divide this moment by the liquid mass, which is the end-dome  

volume (  
  

 
  times the liquid density. This gives the answer: liquid CG = 

 

 
  

 
This gives the CG relative to the base of the upper cone. 
 
The vapour moment is zero as there is no vapour. 
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A tank with hemispherical end-domes: 
In this case, split the tank into three components: the end-domes and the central cylindrical 
section. The CG of the central cylindrical section is the same as the flat-ended tank given 
earlier, so it remains to calculate the CG’s of the end-domes. 
 
Case 1: lower end-dome partially full of liquid 
Firstly, we need to calculate the volume of a 
hemisphere with the origin of the coordinates 
offset to the bottom of the hemisphere as 
shown: 
 
This is the integral of elemental volume dV 
which has elemental height dx 
dV can be taken to be a circular disk of 
radius y and thickness dx, so: 

           
And incremental area          
 
The equation for this hemisphere is: 

(              so:       (                
 

So:   ∫        
 

 
 ∫ (            
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) 

 
Finding the liquid height h from this volume formula involves solving a cubic equation in h. 
This is possible (see http://www.1728.com/cubic.htm) but is extremely tedious. 
It’s easier to program a search routine to home-in on the answer, as described in the previous 
section, case 1. 
 

The vapour volume is then the end-dome volume (   
  

 
  minus the liquid volume. 

 
To find the liquid CG, first find the liquid moment (liquid mass times CG). 

This is the integral of the elemental liquid moment xdm (with liquid density ): 
 

       ∫               
 

 
                   (        as before. 

 

So: ∫       
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To find the resulting liquid CG, divide this moment by the liquid mass, which is the above 
liquid volume times the liquid density. This gives the CG relative to the bottom of the 
hemisphere. 
 
Similarly, the vapour moment is: 

 ∫       
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Where R is the radius of the hemisphere (tank radius). 
 
 



 

 Technical papers   
 

 

Author: Rick Newlands 7 updated: 04/11/10 

 

To find the resulting CG, divide this moment by the vapour mass, which is the above vapour 
volume times the vapour density. This gives the CG relative to the bottom of the hemisphere. 
 
 
Case 2: lower end-dome completely full of liquid 
From case 1, the liquid moment is: 
 

 ∫       
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Where R is the radius of the hemisphere (tank radius). 
 
To find the resulting liquid CG, divide this moment by the liquid mass, which is the end-dome  

volume (   
  

 
  times the liquid density. This gives the answer: liquid CG = 

 

 
  

This gives the CG relative to the bottom of the hemisphere. 
 
The vapour moment is zero as there is no vapour. 
 
 
Case 3: upper end-dome partially full of liquid 
Firstly, we need to calculate the volume of a 
hemisphere with its origin at the centre of the 
hemisphere as shown: 
 
This is the integral of elemental volume dV 
which has elemental height dx, so: 

         and incremental area dA       
 
The equation for this hemisphere is: 

           so:             
 

So:   ∫        
 

 
 ∫ (           
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Finding the liquid height h from this volume formula involves solving a cubic equation in h. 
This is possible (see http://www.1728.com/cubic.htm) but is extremely tedious. 
It’s easier to program a search routine to home-in on the answer, as described in the previous 
section, case 1. 
 

The vapour volume is then the end-dome volume (   
  

 
  minus the liquid volume. 

 
To find the liquid CG, first find the liquid moment (liquid mass times CG). 

This is the integral of the elemental liquid moment xdm (with liquid density ): 
 

       ∫               
 

 
                   (       as before.. 

 

So: ∫       
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To find the resulting liquid CG, divide this moment by the liquid mass, which is the above 
liquid volume times the liquid density. This gives the CG relative to the bottom of the 
hemisphere. 
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Similarly, the vapour moment is: 

 ∫       
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Where R is the radius of the hemisphere (tank radius). 
 
To find the resulting CG, divide this moment by the vapour mass, which is the above vapour 
volume times the vapour density. This gives the CG relative to the bottom of the hemisphere. 
 
 
Case 4: upper end-dome completely full of liquid 
From case 3, the liquid moment is:  
 

∫       
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Where R is the radius of the hemisphere (tank radius). 
 
To find the resulting liquid CG, divide this moment by the liquid mass, which is the end-dome 

volume (   
  

 
  times the liquid density. This gives the answer: liquid CG = 

 

 
  

 
This gives the CG relative to the bottom of the hemisphere. 
 
The vapour moment is zero as there is no vapour. 
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Overall fluid CG 
Now all that remains is to collect the separate CG’s together to calculate the overall CG. 
Designating the lower end-dome as L, the middle cylindrical section as M and the upper end-
dome as U, and liq=liquid and vap=vapour, then the overall CG: 
 

 
                                                                                      

                                         

 

 
Where the individual CG’s are measured from a common reference point such as the tip of 
the vehicle’s nosecone; the overall CG is then referenced to there. 
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Part 2: Moment of inertia calculations 
 
Our first assumption is that the moment of inertia of the liquid and vapour about the tank long 
axis (roll axis) is zero. This is true so long as the tank doesn’t have longitudinal baffles. 
 
Our second assumption is that the moment of inertia of the vapour about the other two axes 
(pitch and yaw) is zero: this might not be true for heavy vapour such as nitrous oxide vapour. 
 
Our third assumption (based on NASA paper Reference 3) is that the liquid moments of 
inertia about the transverse axes (pitch and yaw) can be calculated assuming that the liquid is 
frozen solid, and then a correction is made to allow for actual rotation of the liquid. More on 
this later. 
 
Our moment of inertia calculations will rely on two fundamental theorems: 
 
The parallel axes theorem 
The Parallel axes theorem is used to re-reference a moment of inertia of a mass m from one 
axis (one that passes through the mass’s CG) to another axis that is parallel to the first. 

                   
 
Where r is the distance between the axes. Note that re-referencing the moment of inertia to 
an axis that is not the CG axis increases the moment of inertia. 
 
The perpendicular axes theorem 
This only applies to thin lamina (planar objects such as a thin disc). 
Let IX be the moment of inertia of the body about the X axis, IY be the moment of inertia of the 
body about the Y axis, and IZ be the moment of inertia of the body about the Z axis, and all 
three axes pass through the same point (origin). 
Then the perpendicular axis theorem states that: 
 

IZ = IX + IY 

If the planar object has rotational symmetry such that IX and IY are equal, then the 
perpendicular axes theorem provides the useful relationship: 

IZ = 2IX = 2IY 

For example, we will build up the moment of inertia calculations by starting with the moment 
of inertia of a thin disc of mass m and radius y perpendicular to its plane (roll axis): 
 

      
   

 
   

 
Using the above relationship for rotational symmetry, the moment of inertia of the disc about 
its other two axes (pitch, yaw, i.e. about a diameter) is: 
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A tank with flat end-domes: 
This is the simplest case as the tank is a simple cylinder.  
 
The transverse moment of inertia of a cylinder is well known, 
but I’ll derive it here to show the process: 
 
From the perpendicular axis theorem, the moment of inertia 

of a disc with radius y about a diameter is   
   

 
 where 

y is the tank radius R. 
 

For our elementary disk the volume is          
       
So               
 
and so the moment of inertia of this elementary disc about the diameter is 
 

   
     

 
  

 

 
          

 

 
     

 

 

and the moment of inertia about the base of the tank (y-axis) is from the parallel axis theorem: 
 

               
 

 
               

 

and integrating between 0 (the tank base) and h (the liquid height) we get: 
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If you prefer, the moment of inertia can be expressed in terms of the liquid mass m: 
 

             and the above inertia result can be rearranged as: 
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)   about the base of the tank. 

 
As a check of this result, the standard result for the moment of inertia of a cylinder about its 

centre of mass (CG) is:    (
 

 
   

 

  
  ) 

The centre of mass is 
 

 
 from the bottom of the cylinder, so using the parallel axes theorem:  

                   
 

gives:                  (
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A tank with 45 degree cone end-domes: 
In this case, split the tank into three components: the end-domes and the central cylindrical 
section. The moment of inertia of the central cylindrical section is the same as the flat-ended 
tank above, so it remains to calculate the moment of inertia of the end-domes. 
 
 
Case 1: lower end-dome partially full of liquid 
The moment of inertia of a disc of radius 

y about a diameter is   
   

 
   

For an elementary disc situated at point 
x above the cone apex, its volume is 

                as the cone 

has the formula y = x. 
So               
 
and the moment of inertia of this 
elementary disc about the diameter is 
 

   
     

 
  

 

 
          

 

 
     

 

and the moment of inertia about the y-axis is from the parallel axis theorem: 
 

               
 

 
                

 

 
     

 

and integrating between 0 and h we get: 
 

    
 

 
∫     

 

 
  =   

 

 
*
  

 
+
 

 

   
  

 
 

 

The volume of the liquid cone is   
 

 
   as r = h 

 so       
 

 
  

 

 

So we have      
 
 

 
  

 

 
  (

 

 
  )   (

 

 
  ) referenced to the apex of the cone  

which is a standard result. 
 

 

Case 2: lower end-dome completely full of liquid 

From case 1, the liquid moment of inertia is   
  

 
 or  (

 

 
  )   as R = h and R is the tank 

radius. 
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Case 3: upper end-dome partially full of liquid 
If the base radius is R and has height R, then 
the radius at distance x from the base is 
given by:  y = R - x. 
 
Now we use the moment of inertia of a flat 
disc about a diameter and then use the 
parallel axis theorem to get the moment of 
inertia about the y-axis. 
 
The moment of inertia of a disc about a 

diameter is   
   

 
   

For our elementary disc at point x the volume 
is 

           (        
 

So          (        
 

and the moment of inertia of this elementary disc about the diameter is 
 

   
     

 
  

 

 
(      

 
and the moment of inertia about the y-axis is from the parallel axis theorem: 
 

               
 

 
(           (          

 
Expanding the powered terms: 
 

  
 

 
[(                                     ]   
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and integrating between 0 and h we get: 
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            )   relative to the base of the cone. 

 

Now the volume of the liquid is: 

  ∫     
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And so the liquid mass m    (        
 

 
  )   

 

 
(          

 

 
  ) 

 

This doesn’t neatly factor into:     
 

 
(          

  

 
            ) so there’s 

no simple equation involving m. 

Using long division of polynomials I get:    
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(       

 
 
Case 4: upper end-dome completely full of liquid 
From case 3,  
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Now h = R, so    
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The mass of the liquid is  
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So    (
 

 
  )  referenced to the base of the cone which is a standard result. 
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A tank with hemispherical end-domes: 
In this case, split the tank into three components: the end-domes and the central cylindrical 
section. The CG of the central cylindrical section is the same as the flat-ended tank given 
earlier, so it remains to calculate the CG’s of the end-domes. 
 
Case 1: lower end-dome partially full of liquid 
Again we use the moment of inertia of a flat 
disc about a diameter and then use the  
parallel axis theorem to get the moment of 
inertia about the y-axis. 
 
The equation for this hemisphere is: 

(              

so:       (                
 

The moment of inertia of a disc about a 

diameter is   
   

 
   

 
For our elementary disk at point x the volume is 

            (          
So          (          
 

and the moment of inertia of this elementary disc about its diameter is 
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(                 

 
and the moment of inertia about the y-axis is from the parallel axis theorem: 
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Integrating between 0 and h we get: 
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  )  referenced to the bottom of the hemisphere. 

 

 
Now, the volume of the liquid is: 
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And so the liquid mass m is   (    
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(     
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This doesn’t neatly factor into:     
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so there’s no simple equation involving m. 

Using long division of polynomials I get:    
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Case 2: lower end-dome completely full of liquid 
From case 1, the moment of inertia is: 
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And the liquid mass m is: 
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       referenced to the bottom of the 

hemisphere. 

 
As a check of this result, the standard result (ref. 2) for the moment of inertia of a hemisphere 

about its centre of mass is:    (
  

   
  ) 

The centre of mass is 
 

 
  from the bottom of the hemisphere, so using the parallel axes 

theorem:                     
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Case 3: upper end-dome partially full of liquid 

 
The equation for this hemisphere is: 

           so:             
 
The moment of inertia of a disc about a 

diameter is   
   

 
   

For our elementary disk at point x the volume 

is            (         

So          (         
 
and the moment of inertia of this elementary disc about the diameter is 
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and the moment of inertia about the y-axis is from the parallel axis theorem: 
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Integrating between 0 and h we get: 
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Now, the volume of the liquid is: 
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and so the liquid mass m is   (    
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This doesn’t neatly factor into:     
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so there’s no simple equation involving m. 

Using long division of polynomials I get:    
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Case 4: upper end-dome completely full of liquid 
From case 3, the moment of inertia is: 
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And the liquid mass m is: 
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       referenced to the top of the hemisphere. 

 
As a check of this result, the standard result (ref. 2) for the moment of inertia of a hemisphere 

about its centre of mass is:    (
  

   
  ) 

The centre of mass is 
 

 
  from the top of the hemisphere, so using the parallel axes theorem:  

                   
 

gives:                  (
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Adding the moments of inertia 
 
Now that we have the moments of inertia of the component parts, we need to re-reference 
them to a common datum using the parallel axes theorem. 
But this theorem only works from the CG of each part, so first we have to re-reference each 
part to its own local CG. For this we use the parallel axes theorem, but in reverse, as you’re 
re-referencing to the local CG: 
 

                        
   where m is the mass of the section of fluid being re-

referenced and Ielsewhere is the inertia result given earlier for a particular part (e.g. the top end-
dome) and r1 is the distance from the original reference point (e.g. the base of the upper 
hemisphere) to the local CG. This is given earlier as the liquid CG distance. 
 
Then use the parallel axis theorem to re-reference each part to a common datum such as the 
base of the whole tank: 

                         where r is the combined distance from the part’s local CG to 

the base of the tank (r = r1 + r2 where r2 is the distance from the original inertia reference, e.g. 
the base of the upper hemisphere, to the base of the tank.) 
 
Later, you can re-reference this inertia to the overall CG of the whole vehicle using the 
parallel axis theorem in reverse. 
 
 
Liquid effect on the moment of inertia 
Here’s food for thought: what’s the pitch/yaw moment of inertia of a liquid? (The moment of 
inertia of the liquid about the roll axis is effectively zero.)  
So far (above) we’ve treated the liquid as if it was frozen solid, but this clearly isn’t the case. 
 
This is a really thorny little problem that has occupied some of science’s best minds, and as 
the mass of the liquid in a good hybrid system should be a large part of the launch mass, it 
strongly affects the dynamic stability, i.e. the response of the vehicle to gusts. 
 
Observation of different shapes of clear-plastic bottles of water being rotated by hand shows 
the main effects. 
Far from the axis of rotation, the fluid is carried round by the walls of the bottle as the bottle 
rotates, so the moment of inertia here is almost as much as if the liquid were frozen in the 
bottle, i.e. as if it were solid. 
The liquid near the axis of rotation of the bottle however, a roughly spherical region of the 
same diameter as the bottle, isn’t affected by the bottle’s rotation. 
As the bottle rotates, this roughly spherical shape doesn’t rotate, as if it were a free-to-rotate 
solid sphere on a low-friction pivot. 
So this central region effectively has zero moment of inertia. 
Between these two regions, the effects merge from one to the other: partial rotation. 
 
If the tank is long and thin then the tank diameter is small in comparison to the scale of the 
tank, so the central non-rotating region of liquid is small; the tank’s moment of inertia is almost 
as large as if the liquid was completely frozen solid. 
But if the tank is squat, OR the axis of rotation of the tank is near the base of the tank and the 
tank is almost empty, then most of the liquid is not rotating, so the moment of inertia is very 
much lower than the value it would be if the liquid were frozen solid. 
 
It’s therefore important to find the centre of the vehicle’s rotation, and whether this occurs 
within the liquid tank. Although you can mathematically assume that the centre of rotation is at 
the vehicle CG, it actually may not be if the vehicle is lifting sideways as it rotates due to a 
gust: the instantaneous centre of rotation may be elsewhere. 
 



 

 Technical papers   
 

 

Author: Rick Newlands 20 updated: 04/11/10 

 

Engineer’s mathematical models of liquid tanks use a simple approximation of the above 
picture. 
Reference 3 is typical, where the liquid is replaced by a solid cylinder (as if it were frozen 
solid) but with a correction (reduction) in moment of inertia to account for the non-rotating 
region, 
 
Reference 3’s mathematical derivation of the exact values of the frozen and rotating parts of 
the model involves some powerful maths. 
The fluid is modelled as frictionless and incompressible, and mathematically irrotational (a 
mathematical construct that says that though successive lumps of fluid rotate as they slide 
around each other, the lumps themselves do not rotate, rather like the cars on a fairground 
Ferris wheel.) 
These assumptions allow the velocity of the fluid at any point within the tank to be obtained as 
the tank is rotated. 
(For those who are interested, the usual fluid dynamics method of obtaining the velocity 
potential within the tank using Laplace’s equation is performed, noting the boundary 
conditions at the tank walls and the fluid free surface.) 
 
Having got the velocity at all points within the tank mapped out, Bernoulii’s equation is then 
used to get the pressure distribution around the tank, and then this pressure distribution is 
integrated over the area of the tank walls and base to get the forces that the liquid exerts on 
the walls as the tank is rotated. 
 
Having got the forces that the liquid exerts on the tank walls, Newton’s laws are used to 
construct a mechanical model of the liquid that uses an array of fixed masses, and moving 
masses on springs, to simulate the liquid (see chapter 6). 
 
It’s a mathematical tour-de-force, but the results tally with other’s analyses as used in the 
aerospace industry. 
 
Reference 4 is a modern revision of reference 3 that is much more readable. 
 
First, we take the results we calculated earlier for the moment of inertia of frozen solid liquid in 
the tank. For example, the moment of inertia of a frozen liquid within a cylindrical tank with flat 
end-domes about the centre of mass (CG) of the liquid is: 

         (
 

 
   

 

  
  ) 

 
where: h = the liquid height, R = the tank internal radius, m = the liquid mass 
 
Note that we have to use the moment of inertia of the liquid about its CG. You may need to 
use the Parallel Axes theorem to get the frozen moment of inertia re-referenced to its CG: 

2rmIICG   where r in this case is the distance between the original reference point (e.g. 

the bottom of the tank) and the CG of the liquid. m is the mass of the liquid. 
 
Then a correction is applied to reduce the frozen moment of inertia (Ifrozen) to account for the 
non-rotating liquid region. 
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The ratio of the actual moment of 
inertia (Iactual) divided by the 
frozen moment of inertia is given 
as the following graph (from Ref. 3 
figure 6.14 page 211): 
This depends on the liquid’s 
height h relative to the tank 
internal diameter d. 
 
Notice that the actual moment of 
inertia is lowest when the liquid 
height equals one tank diameter 
(h/d = 1) as this is the most nearly 
spherical shape the liquid gets, so 
the liquid will hardly revolve when 
the tank is rotated. 
 
In tabular form, this graph is (data extrapolated past h/d = 8): 

h/d Inertia 
ratio 

 0 1 

0.14 0.898 

0.217 0.814 

0.302 0.693 

0.378 0.562 

0.411 0.479 

0.496 0.367 

0.565 0.296 

0.653 0.233 

0.75 0.19 

0.82 0.166 

0.9 0.153 

1.008 0.156 

1.116 0.186 

1.207 0.222 

1.352 0.285 

1.58 0.382 

1.806 0.466 

2.069 0.546 

2.358 0.624 

2.664 0.689 

2.98 0.745 

3.348 0.784 

3.905 0.832 

4.514 0.872 

5.088 0.894 

5.849 0.92 

6.745 0.939 

8.017 0.963 

9.216 0.975 

15 1 
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These results are for a tank with flat end-faces, but reference 3 says that they will be 
applicable to tanks with other end-domes (conical, spherical) as long as the following 
correction is made: calculate and use the equivalent liquid height in the above graph. This is 
what the liquid height would be in a flat-faced tank of the same tank internal radius R, and that 

contains an equal liquid volume. So divide your liquid volume by     to get the equivalent 
liquid height. 
 
Note that the final moment of inertia given above is about a point that is the centre of mass 
(CG) of the liquid. 
Just like any other moment of inertia, this can be converted to the value about the vehicle CG 
using the Parallel Axes theorem: 

2rmIICG   where r in this case is the distance between the centre of mass of the liquid 

and the vehicle CG, and m here is the mass of the liquid. 
 
 
Note that the nitrous vapour in a hybrid tank is almost as dense as the liquid nitrous below it 
on a hot day. It is a vapour and not a liquid, so I’ve assumed that it has zero moment of 
inertia. 
This may well be too much of an assumption, comments please. 
 
Reference 5 gives a guide to calculating the moment of inertia of the liquid in a large tank that 
requires internal tank baffles to reduce slosh (see our paper ‘hybrid effects on stability’ for an 
explanation of slosh). 
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